流場、磁場及介質電導率對流量測量的影響
(一)流速分布的影響
只要管內流速為軸對稱分布,則電極上產生的感生電動勢大小與流動狀態無關,不論它是層流還是紊流,僅與流體的平均流速成正比.因此,流速分布為軸對稱是電磁流量計必須滿足的工作條件之一.
假如,流速分布相對管中心為非對稱時,測量就會產生誤差.因為電極上得到的感生電動勢e是測量管內所有液體共同貢獻的結果,所以每一個流體質點都有貢獻。但由各個流體質點相對于電極的幾何位置不同,故即使各質點速度一樣,它們對電動勢e的貢獻也是不同的.越靠近電極的質點對電動勢e的貢獻越大.也就是說,電極附近的感生電動勢較大,與兩電極平面成90°的地方的流體產生的感生電勢就?。裕绻姌O附近的流速非軸對稱的偏大,測得的流量信號就比實際流量值大;反之,電極附近的流速非軸對稱的偏小,測得的流量信號也就偏?。虼?,為了消除由于流速分布而產生的測量誤差,在電磁流量變送器的應有一定長度的直管段,以保證流速的鈾對稱分布.
(二)磁場邊緣效應的影響
由前述的基本假定可知,e=DB 這一基本表達式是在“長筒流量計”的模型條件下推得的,即假定沿流體的流動方向上磁場始終是均勻的.實際上,這意味著沿管軸方向上的磁場為無限長,而實際流量計的磁場是有限長的,所以就必須考慮有限長磁場產生的邊緣效應對測量的影響。
(三)被測介質電導率的影響
目前,電磁流量計轉換路的輸入阻抗已有所提高,測量導電性液體時,一般不會因介質電導率稍有變化而引起誤差,但對于一定的轉換器輸入阻抗,被測介質的電導率有一個下限值 min,不能低于該下限值.
被測介質的電導率太大也是不允許的。例如當電導率超過10-1(S/cm)左右時,就會降低流量信號,改變指示值,即指示流量值小于實際流量值.這是因為在電磁流量變送器中,磁場為有限長,被測的導電液體只有流過有限磁場時,才能產生感生電動勢e.所以,代表流量信號的感生電動勢e是磁場部分的導電液體切割磁力線的結果,磁場兩端以外的導電液體沒有對e作出任何貢獻.相反,由于它們也是和兩個電極連通的,故也就構成了一部分外電路。當變送器與轉換器連接在一起時,這部分外電路就與轉換器輸入阻抗相并聯而成為變送器的負載.當被測介質的電導率很大時,外電路的電阻較小,達時不管轉換器的輸入阻抗有多高,并聯的結果將取決于這部分液體外電路,從而減小變送器與轉換器之間的傳輸精度。
所以,對一個電磁流量計來說,測量不受介質電導率影響是有一定范圍的,被測介質電導串既不能太大,也不能太小。隨著電子技術的發展,轉換器輸入阻抗的提高,必將可以降低被測介質電導率的下限.